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Abstract

We present a modulation technique to embed a binary bitstream within a real-valued
Gaussian noise sequence. The modulation produces a sequence which possesses an
optimal minimum distance property that promotes accurate detection when the sequence
has been exposed to noise. Because the modulated sequence possesses Gaussian
properties and has low power, it is difficult for unintended parties to intercept and detect
the signal. The technique can be used to hide information in a signal that is then added to
a carrier for a variety of applications.
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1. Introduction

In many applications, the capability to conceal the transmission of information is desired.
Such is the case for applications of steganography, watermarking, and tamperproofing. An
effective method of concealing information is to exploit the properties of existing systems;
there are numerous techniques currently in existence [1, 2, 3].

For example, various types of noise exist in the output of many electronic systems, natural
digital images, and audio signals. We can take advantage of this phenomenon by concealing
or embedding information in a noise signal. This signal can then be added to or used as
a replacement for the inherent noise in the system. If this embedded signal maintains the
characteristics of the inherent noise, it will be difficult, if not impossible, to distinguish the
signal from the carrier’s innate noise.

From Shannon’s information theory, we know that .in the presence of interference and
jamming, a communicator’s best waveform should statistically appear as Gaussian noise [4,
5]. This is true because maximum entropy is obtained from Gaussian statistics due to the
wideband spectral properties of the waveform.

We apply Shannon’s recommendation during the development of the Piecewise Linear
Noise Modulation (PLNM) scheme by requiring that the modulated output produce a se-
quence that appears as Gaussian noise, regardless of the value of the data signal. This
Gaussian noise signal may then be added to a carrier of some type to transmit the embed-
ded information. Furthermore, because interference caused by the transmission channel or
imperfect carrier recovery may lead to problematic detection of the embedded data signal,
a minimum Euclidean distance property among the modulated values is desired.

PLNM embeds binary information within a real-valued Gaussian noise sequence. The
PLNM output maintains a minimum Euclidean distance, proportional to the power of the
embedded signal, to allay the effects of distortion on the demodulated signal. The carrier re-
quirements for our system are very flexible. In general, the embedded waveform can be added
to any signal that is typically exposed to noise that is modelled as white Gaussian noise. The
PLNM technique yields good performance and was employed in the steganographic system
presented by Marvel et al. [2].

In the following section, we present background and motivation for our noise modulation
technique by citing the parallels and distinctions between PLNM and traditional spread
spectrum communication. We then describe a simple antipodal noise modulation technique
and its problematic detection in section 3. Then in section 4, we present the PLNM scheme
along with its mathematical foundation. Next we use the information presented thus far to
compare the two noise modulation techniques in section 5. Finally, in section 6 we draw
conclusions and present directions for future research.




2. Background

Although both PLNM and traditional spread spectrum communication techniques have
similar communication objectives, there are obvious contrasts between the two. Both meth-
ods can be used to generate a signal that has low power, a robustness to interference, and
is difficult to detect. The spread spectrum signal is generated by modulating a data signal
onto a wideband carrier so that the resultant transmitted signal has a much larger band-
width than the original bandwidth of the data and is relatively insensitive to the value of the
data signal [6]. PLNM operates in a analogous manner by embedding a binary data signal
within a wideband Gaussian noise sequence. Both systems are typically capable of operating
at low power, thereby providing a signal that is difficult to detect and that possesses the
interference immunity of a wideband waveform. Furthermore, PLNM relies on the concept
of a stored-reference spread spectrum [7], where an identical key and pseudorandom number
generator are necessary at the transmitter and receiver.

In a traditional spread spectrum system, the wideband signal is obtained by modulating
the data signal with a spread spectrum code generator and then an RF oscillator via fre
quency or phase modulation. In contrast, PLNM is an amplitude modulation scheme that
generates a real-valued noise sequence that can replace or be added to inherent noise in a sys-
tem. The selection of this system is arbitrary; for example, a digital image or audio sequence
can function as a carrier. Detection issues related to signal recovery in spread spectrum are
addressed by adding redundancy with the binary spread spectrum code and applying car-
rier recovery techniques. PLNM provides improved detection performance by providing a
minimum distance property that is proportional to the noise signal power. Additional error
protection may be obtained by encoding the data signal via an error control code whose
rate depends on anticipated carrier recovery performance and channel noise. Furthermore,
since the PLNM noise signal is added to the carrier (typically an image or audio sequence),
carrier acquisition may be performed using a variety of noise removal filters. The challenge
of synchronization is trival because it is addressed by the synchronization of the carrier of
its format (e.g., image, audio, video, etc.).

3. Simple Antipodal Noise Modulation

Let us begin by describing an antipodal noise modulation technique, similar to the one
used by Hartung and Girod [3]. Assume that the message signal m is a bilevel signal
consisting of symbols from {—1,+1}, and the noise sequence n € R is generated by a
pseudorandom number generator emulating a Gaussian distribution with zero mean and
variance, o2 *. The value of o2 can be adjusted to provide a desired amount of robustness,
but is limited by the susceptibility of detection (in the sense of low probability of detection).

*In what follows, we will adopt the notation N(p,0?) to represent the Gaussian distribution with mean
4 and variance o2.




The two signals are modulated by simple multiplication,
s(ni,m;) = n; x m;. (1)

The modulated signal, s € R, is a sequence possessing a Gaussian distribution with zero
mean and variance o2. The signs of the message bit and the noise sequence determine the
sign of the modulated signal. Since the noise sequence is symmetric about zero, a change in
sign preserves the Gaussian distribution of the signal [8].

The demodulation process is straightforward. The sequence . is replicated at the receiver,
and the sign of each symbol of this sequence is compared to the sign of the corresponding
symbol in the received modulated sequence, $, to recover an estimated value of the message
sequence, m, as follows:

m; = sign (i) . (2)

2

Even though this modulation method meets the necessary requirements of producing a
Gaussian sequence, regardless of the distribution of the message sequence, a major deficiency
lies with detecting this signal. Because the modulated signal must follow a Gaussian dis-
tribution, most of the sample values occur in the vicinity of zero, with fewer values in the
tails. Moreover, only the variation of the sign of the received signal indicates the value of the
encoded message bits. Although the distance between the values of the modulated signal for
both values of m,

D = |s(ni,m; = 1) — s(ni, m; = +1)| = 2|ni, (3)
is large for extreme values of the waveform, it is much more often small, in accordance with
the Gaussian distribution.

In most instances, when the modulated signal is exposed to external noise from the effects
of the carrier or the transmission channel, correct detection of the encoded message sequence
is problematic. As with many communication signals that may be exposed to noise, we want
the points within our signal constellation as far apart as possible, reflecting a large minimum
distance.

This minimum distance is defined as the smallest Euclidean distance between all pairs of
distinct points in the signal constellation,

dmin = m.inls(nhmi = _1) - s(niami = +1)| = m1n2|ni| = 2mm Inzl (4)
1 7 1

Communication constellations are typically compared by their dpi,. If the modulated signal
incurs noise or distortion, the larger the minimam distance, the more distortion the modu-
lated signal can incur and still be demodulated correctly. However, if the distortion is greater
than the threshold value d,;, /2, then a demodulation error will occur.

With this simple system, d,,;, = 0. To improve detection performance, it is desirable
for minimum distance to be as large as possible. This will promote reliable recovery of the
estimate of §.




4. Piecewise Linear Noise Modulation (PLNM) Scheme

Under the constraint that the modulated signal maintain a Gaussian distribution, an
improved modulation technique should modulate keyed pseudorandom values with the bilevel
message bits and produce a sequence of real numbers that follow a Gaussian distribution
and yield a large minimum distance.

Formally, if 1, 2o, . . . represents a random sequence from a Gaussian distribution, N(0, o?),
we want to determine a transformation t* such that t*(z;),t*(z;),... is also distributed
N(0,0?) and satisfies the expression

max min |z — t(zs)], (5)

where () is the set of all transformations of N(0,0?) onto itself.

To aid in the delineation of 2, we will appeal to the relationship between a continuous
distribution and the uniform distribution on the unit interval [9]. Simply stated, for any
continuous random variable z, with distribution f(z) and cumulative distribution function
(cdf) F(z), F(z) transforms the variate z into a variate distributed uniformly on the unit
interval. Symbolically, F(z) ~ U(0,1), where the notation “~” denotes “distributed” and
U(0,1) the uniform distribution on the unit interval. Conversely, the inverse mapping F~1(u)
maps a uniform variate into a variate having distribution f(z).

This means that V ¢ € Q, the transformation ¢ : N(0,0?) — N(0,02) can be expressed as

t(z) = 7' (g(2(2))), _ (6)
where ®(-) denotes the Gaussian cdf, and the function g(-) is a mapping of the unit interval
onto itself. Expressing ¢(z) as a composite function facilitates our inquiry since (1) it estab-
lishes that V ¢ € 2 3 a unique bijection g of the unit interval, and it emphasizes that (ii) the
bijection g must also be distribution preserving. It is therefore sufficient to limit our search
for ¢ to consideration of the set of all mappings of U/(0,1) onto itself.

Consider the transformation that produces the modulation points for the antipodal mod-
ulation method presented in Section 3. Let uy,uy,... be a random sequence from U(0,1).
The transform

gu)=1—-u 0<u<l, (7

shown in Figure 1, yields g(u;),g(uz), ... from which the modulated signal of the antipodal
modulation system can be constructed as

_f o Hw) m=+1
s(u,m) = { o1 (g(u)) m = —1. (8)

For u = 1, g(u) = u, and the distance (3) is zero. In this instance, the message bit m; cannot
be recovered, even in the absence of noise.
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Figure 1. Transformation for Antipodal Noise Modulation

Now consider, as the basis for PLNM, the following transformation:

1

glu) =\ u—3 < (9)

u 4+ % 0<u
% <u
0 otherwise.
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As can be seen in Figure 2, g(u) is piecewise linear with a single discontinuity at v = 3.
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Figure 2. Transformation for PLNM

To encode, each element of the modulated signal sequence s is formed by selecting from u
or g(u), arbitrated by the elements of the message signal, m, and transformed to a Gaussian
random value, as prescribed in (8).

Demodulation of the modulated sequence is accomplished by first regenerating both
®'(u) and ®7'(g(u)) at the receiver and calculating a threshold as the midpoint. The




estimated modulated signal is then compared to this threshold to determine the estimated
value of the encoded message.

4.1 Mathematical Foundation

In this section we focus on relation (9) in the search for a transformation ¢* that max-
imizes the minimum distance between the two possible modulated values as expressed in
(5). We first establish that g(u) in (9) preserves the uniform distribution requirement. This
condition is necessary to assure that when the inverse Gaussian cdf, (), is applied, the
inverse value will follow a Gaussian distribution. Then we show that the transform (9) is
optimal in maximizing the minimum distance between u and g(u). We then proceed to
quantify the minimum distance between ®~(u) and ®~*(g(v)). Finally, we embed g(x) into
a more general result characterizing the family of piecewise linear transformations of the
type considered here.

4.1.1 Distribution of the Transformed Variable
We establish that g(u) ~ U(0,1) by showing that its moment generating function coin-
cides with that of the uniform distribution.

If f(z) is the probability distribution function of a random variable X, the moment
generating function of g(X) is defined [10] as

My (t) = / " ) f(z)de. (10)
Now, let u ~ U(0,1) and let
u+ % 0<u< %
gluy=q u—z Z<u<l (11)
0 otherwise.

Then, the moment generating function for g(U) is

Myo(®) = [ e fu)du

i 1
= /2 et+2) gy +/; et=2) gy (12)
0 2
L4

The Uniqueness Theorem [11] asserts the following: Let X and Y be two random variables
with moment generating functions Mx (t) and My (t), respectively. If Mx(t) = My(t) for all
values of ¢, then X and Y have the same probability distribution.

Since My)(t) = $(ef — 1) = Myo,)(¢) — the moment generating function for a U(0,1)
variate [12] — the result is established.




4.1.2 Optimality Condition

Let F = {f.}.cr denote the class of bijections of the unit interval indexed over the set I.
For the value z = , the inequality

e~ f@) =I5 - F3)I < 5 (14)

holds V f, € F; therefore,
(15)

1
L
max min |z ~ flz)| < 3

Consider the transformation (11). Since

1
u=g() =3 Yu €l0,1] (16)
we have 1
i Ju—g(v)| = 3 (17)

but g € F, therefore g(u) satisfies condition (15).

This establishes that the piecewise linear function (11) is an optimal transformation on
the unit interval, in that the upper bound, % in inequality (15), is everywhere assumed.

4.1.3 Minimum Euclidean Distance

We begin by expressing the distance between the possible modulation values of our piece-
wise linear transformation as

D =27(x) ~ 27 (g(w))- (18)

To find the maximum or minimum of a differentiable function, we would investigate the
points at which the derivative is equal to 0. However, the inverse Gaussian cdf, =1, does
not exist in closed form, so we are denied a direct approach to determine the minimum value
of the distance D.

Now consider the signed difference:

O (u) — & (u+ %), 0<u< % (19)
By definition, the uth percentile of a normal variate, z,, satisfies the following relations:
o(z.) = [ T H)di=uw; O '(u)=z., O0<u<l (20)

where ®'(-) = ¢(-), the normal distribution function.




On the interval 0 < u < -;-, we have

7 (u) ~ 87 (g(w) = 87(u) = 87+ 1) = £ — a0y, (21)

Consider now the subinterval 0 < u < % and an arbitrarily small € > 0 such that

1 1 13
u+e€(O,Z)andg(u+e)=u+—+e€ (22)

3tz
For every € > 0 satisfying (22) 3 6 = 6(u, €) such that

b d
/a $(t)dt = ¢ = / #(t)dt, (23)

where

a =, b= L(ute) = Ty + 61(11, 6)7 (24)
€=ty d=Tgu1,= Tty + 62(u, €). (25)

But for u € (0,1), the normal distribution function ¢(z) for z, < z < 7, + 81(u,€) is
everywhere less than ¢(z) for T(utl) S T < T(uqly + 62(u, €) as illustrated in Figure 3.

16 *3p

Figure 3. Distance Between Modulation Points, u = 1

According to the Mean-Value Theorem [13]: If a function f(z) is continuous on a closed
interval [a, b], then there exists a number z’, a < 2’ < b, for which

b
[ f@)dz = §(a')(s - a). (26)
Application of the Mean Value Theorem to each of the integrals in (23) yields

¢(z') (b~ a) = §(z")(d - ¢). | (27)




But 0 < ¢(z') < ¢(z"); therefore, b— a > d — c. Substituting and rearranging the
inequality, we obtain

Tu = T(upd) < L(ute) ~ T(ut i) (28)

or alternatively, from (21)

& (u) — @M (g(u)) < @ Mu+e) - O (g(u+ €)). (29)
However, u € (0, %) is arbitrary and € > 0 is arbitrarily small; this assures that ®~*(u) —
®~'(g(u)) — although negative — is strictly monotonically increasing on the interval (0, 2).

The subinterval boundary point, u = %, requires special attention. For this value of u,
_ 3
g(u) =% and
®1(u) — 7 (g(u)) = T1 — T3 (30)

For the symmetric Gaussian distribution the relation
Ty =—T1—q, 0<a<1 (31)

holds, and hence

7 (u) - 87 (g(u)) = 22 (32)

1.
4

Up to now, our assumption has been that z ~ N(0,0?); to transform to the standard
normal variate we evaluate (z — p)/o = z ~ N(0,1) to obtain

£1 =0 xz1 = (-0.675)0. ' (33)

A plot of the signed difference is shown in Figure 4 for noise power 0% = 1. An entirely
analogous argument to that detailed for the subinterval (0, 2) holds for the remaining subin-
tervals (,3), (3,2), and (2,1). As can be seen, local minima for the difference D occur at

u = % and u = 2 where dy;n = 1.350.

4.1.4 Results for Gaussian Distribution

In this section, we determine the specific properties that an optimal solution #* in ex-
pression (5) must possess.

If X is a continuous random variable with distribution fx(z), and ¥ = ¢(X) is an
invertible function of X, the well-known result [§]:

fr(y) = fx(g“(y))l%g‘l(y)l, (34)

provides the distribution of the variable Y. In our investigation, X ~ U(0,1) and Y = g(X)
is defined in (11).
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Figure 4. PLNM Signed Distance, D for o2 = 1

Consider fx(g7*(y)) in (34); g™ (y) : [0,1] — [0, 1] is one-to-one and onto. This requires
that fx(¢7(y)) =1 for 0 < y < 1. Now consider £97(y), where

9~ ) { y—3 1<y<lL 4 (35)
The inverse g~ (y) has a discontinuity at y = 3 so the derivative %g"l(y) does not exist

at that point; however, f—yg‘l(y) =1for 0 <y < 1andy # % Therefore, from equation
(34), fr(y)=1for0<y<landy#1.

In other words, the random variable Y is distributed uniformly on the unit interval [0, 1]
except for a set of measure zero (at y = %). Moreover, any transformation of the uniform
random variable X, Y = g(X) must be of the form ¥ = X + ¢, where ¢ is a constant, if the
constraint that ¥ ~ U(0, 1) is to be satisfied.

The result that ¥ ~ U(0,1) was already established in section (4.1.1), where we em-
ployed the moment generating function to arrive at the same conclusion. However, at this
juncture, we have gone beyond section (4.1.1) in two important respects. The point of dis-
continuity, y = %, has been identified as requiring special attention; and, we now know that
the transformation g(-) in expression (6) must be of the form ¥ = X + ¢ when i) = ().

To accommodate the discontinuity at y = 3» it is sufficient to say that ¥ ~ U(0, 1) except
on a set of measure zero. The important point in application is that the discontinuity has
no impact on the PLNM procedure. As a matter of fact, a finite number of discontinuities

will still hold probability measure zero.

4.1.5 Unifying Result

What remains to be established is that (9) gives rise to an optimal solution to the
fundamental problem expressed in (5)-(6); i.e., we need to show that a solution to:

max min |u— g(u)], (36)

10




is sufficient to assure that

max min [07)(u) — @7 (g(w)| (37)

is also satisfied. We will address this problem with the aid of the following theorem.

Theorem: Let g(u) be a piecewise linear bijection of the unit interval of the form

u+c 0f<u<fl-c¢
gluy= u—-(1-¢) 1—c<u<l (38)
0 otherwise
where c is a constant, 0 < ¢ < 1. Then, the
. 10\ &1l
min 87 (u) ~ 87 (g(w))| (39)

will occur for a value of u satisfying ¢(z.) = ¢(zgw)).

Proof by contradiction: Assume that the

min |87} (u) — &7 (g(u))| : (40)

«€[0,1]
will occur for a value of u for which ¢(z.) # d(z,()). Let u = u* be such a value.
Case 1. ¢(2ye) < ¢(Zg(uny)-
If0 <u* <1-—c, then u* < g(u™) = Tys < T4(y+). Choose an epsilon
0 < e <[B(zg(ur) — B(zur)]/2. (41)
Since ¢(z) is continuous, we have by definition
9(2) — $(a00)] < € whenever [z, — 24| < (¢) (42

and

|6(z.) — $(zg(ur)) < 85(e). (43)

< € whenever |z, — Tg(ur)

Choose 6 = min(6;,6;). Within a é-neighborhood of z,+ and z4(,+), the corresponding
ordinates ¢(z) do not overlap (reference Figure 5). Now, increment «* by an amount 7; u* +
n = v/, such that z,s € (zy» — 6,24+ + 6) and zy(ury € (Ty(uv) — 8, Ty(ur) + 6). (Our choice of ¢
and é guarantees that such an -value exists.)

The relation

/ ba)de =7 = [ 4(c)dz (44)

* Tg(u*)

. must hold.

From the mean value theorem we have

(Zw — xu‘)¢($l) = (xg(u’) - xg(u‘))¢($ll)v (45)

11
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Figure 5. Nlustration of Case 1

with

#(z') < (") (46)
This implies 2, — z,+ > Tg(w!) — To(u+)- Rearranging, Tg(u*) = Ly* > Tg(y) — Tor. This means
that u* € (0,1 — ¢) cannot be optimal.

Consider now the complementary interval, (1 — c, 1).

If1—ec<u* <1, then g(u*) < u* = Tg(u+) < Zy+ and an appropriate graphic would be
the mirror image of Figure 5.

The ¢, §, argument remains unchanged. Whereas before we considered an incremental
value of u, we now consider a decremental value of u*u* — 1 = o/, leading to

L7 @)z =0 = [ g(a)ie (47)
.1:9("/) Tyt

and inequality zy(,) — Tg(w) < Ty» —Ty. Rearranging, Ty — x40 < Ty — Zg(u+). This means
that u* € (1 — ¢, 1) cannot be optimal. Case 1, A(zyr) < #(24(u+)), cannot hold.

Case 2. ¢(zye) > ¢z 40ur))-

Reverting to case 1: ¢(z,+) > B(2g4u+y), and u* on the intervals (0,1 -¢), (1 —¢1), an
argument identical to that detailed above leads to the conclusion that H(xur) > S(Zg(ur))
cannot hold. The proof is thus established by contradiction. M '

Determination of

min 107 (w) — 87 (g(u)) (48)

is now straightforward; ¢(z,) = ¢(z,()) is satisfied when u = 1 — g(u), with g(u) as given
in (38).

Solving for u, we obtain the values

1 c
u=§(1—c)andu—1—§ (49)

for which |®7*(u) — ®*(g(u))| must be evaluated to determine local extrema.

The minimum value may be expressed for 0 < ¢ < 3 as

min |97 (u) — ®(g(u))| = 202(140)/2- (50)

u€[0,1]

12




This value is monotone increasing over the specified interval. Over the entire interval,
0 < ¢ < 1, (50) is symmetric about ¢ = 1/2, at which the global maximum is assumed. The
entire function is graphed in Figure 6 for o = 1.
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Figure 6. Minimum Distance vs. Discontinuity Location

5. Comparison of Noise Modulation Techniques

Both PLNM, presented in Section 4, and antipodal noise modulation, Section 3, modulate
a binary input signal and produce Gaussian noise, regardless of the distribution of that
input signal. We established that PLNM has greater noise immunity than the antipodal
modulation by comparing the minimum Euclidean distance between modulation points, dmin,
for each technique. Recall, in the presence of noise, a transmitted signal can be correctly
detected if the distortion does not exceed a threshold value of dpi,/2 [14]. For antipodal
noise modulation this threshold is equal to 0, but for PLNM, d,/2 = 1.350/2 and o2 can
be adjusted to achieve the desired performance.

Traditionally, when detécting signals in the presence of AWGN, modulation techniques
are compared by computing a probability of error, P.. Let us assume a maximum a posteriori
(MAP) detector with the binary information bits having equal probability of occurrence.
Then, the probability of error can be computed using the distance between the modulation
points and the power of the channe] AWGN.

We begin with the familiar case of uncoded antipodal (binary) modulation and use a
traditional modulation technique by which to compare our two noise modulation methods.
For all methods, let us denote a modulated signal as s and the channel AWGN as the signal
v with power oZ. Then, the probability of error for uncoded antipodal modulation with

modulation values of s = m € {1} is

r=(oae) <o), 61

13




where Q represents the complementary error function, A is equal to the distance between
the modulation signals, |s(m; = —1) — s(m; = 1)|, and o2 =N,/2 [14].

The noise modulation techniques considered in this paper produce Gaussian noise. There-
fore, the probability of error is conditional upon the value of a random variable. Con-
sequently, the conditional probability of error for the antipodal noise modulation can be
expressed as

P = Q (%) =Q (Ignil) ; (52)

v

with n ~ N(0,02). For PLNM, the conditional probability of error is

Pelu = Q (anIQ)'l(u) — Q'l(g(u))l) , (53)

20,

where u ~ U(0,1).

To present the probability of error for antipodal noise modulation and PLNM as a func-
tion of the signal-to-noise ratio (SNR), we compute the expected probability of error by
weighting the conditional probability of error with the probability distribution of the ran-
dom variables n and u, respectively.

The two noise modulation techniques are compared in Figure 7, where the expected P,
in relation to SNR is shown. In addition, the P.-SNR performance of uncoded antipodal
modulation has been included to demonstrate the relation of nojse modulation to uncoded
modulation.

As is demonstrated in Figure 7, the antipodal noise modulation experiences a floor ef-
fect with the expected P, not less than 10~2 at 30 dB SNR. The PLNM has much better
performance than the antipodal noise modulation and is similar to that of uncoded binary
modulation. Of course, the uncoded antipodal modulation has better P, performance than
PLNM because the uncoded signal is not constrained to follow a Gaussian distribution (hid-
den in noise). The performance difference between uncoded modulation and PLNM can be
attributed to hiding the transmitted data in a Gaussian noise. This hiding exhibits a 2.36
dB loss in SNR at a P, equal to 10~°.

6. Conclusions

In this paper, we presented a modulation technique to embed a binary bitstream within a
real-valued Gaussian noise sequence that possesses a minimum distance property to promote
accurate detection. The resultant signal is Gaussian in nature and is difficult to intercept
due to its low power. The technique can be used to hide information within a noise sequence
that is then added to a carrier for a variety of applications. In addition, we established
that the PLNM modulation function is an optimal mapping that maximizes the minimum
distance between modulation points while meeting the desired stochastic constraint.
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Figure 7. Comparison of Modulation Techniques

There are some extensions of this work that were deemed to be beyond the scope of
this paper. The effect of more than one discontinuity on the value of d,,;, in the PLNM
procedure was not investigated. Additionally, it may be possible to follow the PLNM frame-

work established here to embed information within non-Gaussain noise sequences that hold
importance in application.
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